Tensorflow hata

import numpy as np

import cv2

import os

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix

import seaborn as sns

import matplotlib.pyplot as plt

from keras.models import Sequential

from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, BatchNormalization

from keras.utils import to_categorical

from keras.preprocessing.image import ImageDataGenerator

import pickle

warnings.simplefilter(action=“ignore”, category=FutureWarning)

path = “myData”

myList = os.listdir(path)

noOfClasses = len(myList)

print(“Label(sınıf) sayısı”,noOfClasses)

images = []

classNo = []

for i in range(noOfClasses):

myImageList = os.listdir(path + "\\" + str(i))

for j in myImageList:

    img = cv2.imread(path + "\\" + str(i) + "\\" + j)

    img = cv2.resize(img, (32,32)) #yeniden boyutlandırma

    images.append(img)

    classNo.append(i)

print(len(images))

print(len(classNo))

images = np.array(images)

classNo = np.array(classNo)

print(images.shape)

print(classNo.shape)

veri ayırma

x_train, x_test , y_train, y_test = train_test_split(images,classNo, test_size=0.5 , random_state= 42) #bura ile sonradan oyna

x_train, x_validation , y_train, y_validation = train_test_split(x_train,y_train, test_size=0.2 , random_state= 42)

print(images.shape)

print(x_train.shape)

print(x_test.shape)

print(x_validation.shape)

#görselleştirme

“”"

fig, axes = plt.subplots(3,1,figsize = (7,7))

fig.subplots_adjust(hspace = 0.5)

sns.countplot(y_train, ax = axes[0])

axes[0].set_title(“y_train”)

sns.countplot(y_test, ax = axes[1])

axes[1].set_title(“y_test”)

sns.countplot(y_validation, ax = axes[2])

axes[2].set_title(“y_validation”)

plt.figure(),plt.show()

“”"

def preProcess(img):

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

img = cv2.equalizeHist(img)

img = img/255

return img

x_train = np.array(list(map(preProcess, x_train)))

x_test = np.array(list(map(preProcess, x_test)))

x_validation = np.array(list(map(preProcess, x_validation)))

x_train = x_train.reshape(-1,32,32,1)

x_test = x_test.reshape(-1,32,32,1)

x_validation = x_validation.reshape(-1,32,32,1)

data generate (resim üzerinde kayma zoom yapma zoom out yapma)

dataGen = ImageDataGenerator(width_shift_range= 0.1,

                        height_shift_range= 0.1,

                        zoom_range= 0.1,

                        rotation_range= 10)

dataGen.fit(x_train)

y_train = tf.keras.utils.to_categorical(y_train, noOfClasses)

y_test = tf.keras.utils.to_categorical(y_test, noOfClasses)

y_validation = tf.keras.utils.to_categorical(y_validation, noOfClasses)

#model oluşturma

model = Sequential()

model.add(Conv2D(input_shape = (32,32,1), filters= 8, kernel_size=(5,5),activation=“relu”,padding=“same”))

model.add(MaxPooling2D(pool_size= (2,2)))

model.add(Conv2D(filters= 16, kernel_size=(3,3),activation=“relu”,padding=“same”))

model.add(MaxPooling2D(pool_size= (2,2)))

model.add(Dropout(0.2))

model.add(Flatten())

model.add(Dense(units=256,activation=“relu”))

model.add(Dropout(0.2))

model.add(Dense(units=noOfClasses, activation=“softmax”))

model.compile(loss= “categorical_crossentropy”,optimizer=(“Adam”), metrics=[“accuracy”])

batch_size = 250

hist = model.fit_generator(dataGen.flow(x_train, y_train, batch_size),

                        validation_data = (x_validation,y_validation),

                        epochs=45, steps_per_epoch=x_train[0]//batch_size, shuffle=1)

pickle_out = open(“model_trained_new.p”,“wb”)

pickle.dump(model, pickle_out)

pickle_out.close()

 **hata**

Traceback (most recent call last):
File “c:\Users\burak\Desktop\yazılım\open_cv_goruntu_isleme\evrisimsel_sinir_agları\rakam_sınıflandırma\raka_tanıma_model_egitilmesi.py”, line 8, in
from keras.models import Sequential
File “C:\Users\burak\AppData\Local\Programs\Python\Python39\lib\site-packages\keras_init_.py”, line 20, in
from . import initializers
File “C:\Users\burak\AppData\Local\Programs\Python\Python39\lib\site-packages\keras\initializers_init_.py”, line 124, in
populate_deserializable_objects()
File “C:\Users\burak\AppData\Local\Programs\Python\Python39\lib\site-packages\keras\initializers_init_.py”, line 82, in populate_deserializable_objects
generic_utils.populate_dict_with_module_objects(
AttributeError: module ‘keras.utils.generic_utils’ has no attribute ‘populate_dict_with_module_objects’

hangi sürmü indirmem gerek bilen var mı bundan öncede to_categorical hatası veriyordu sürüm değiştirdim bu seferde böyle bir hata veriyor